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I
INTERLISP PERFORMANCE MEASUREMENTS

I

The advantaqes of LISP for fast production of larqe software

systems, especially those involving Artificial Intelligence

applications, are too well known for us to expound on here. Suffice it

to say that systems such as DENDRAL, MACSYMA, SOPHIE, SCHOLAR, LUNAR,

etc., could not have evolved and could not have been developed within

the time and level of effort they actually reauired to complete, had it

not been for the existence of a sophisticated LISP programming

environment, of which perhaps INTERLISP is the best known.

But as all users of these systems know, the blessinqs of such

sophisticated Droqrammina environments are not without some serious

counterparts. Althouoh proqrammina (dlebuogina, editinq, ... ) and

runnino finished products written in INTERLISP proceed at a surprisingly

fast clio when the total load on the machine is low, dearadation of

performance increases rapidly - and seemingly non-linearly - to

intolerable levels as soon as larqe numbers of users increase the

demands imposed on the computer's resources.

An indication of how bad thinas can he is provided by the following

typical example. In a busy mornina, a simple INTERLISP editina command

that uses under 30 milliseconds of CPU time takes almost an order of

magnitude more elapsed time than would he expected from the average load

on the machine. Thus, extremely slow responsiveness in the face of
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small computational demands is one of the serious problems that we shall

investigate.

Another asnect of this performance deqradation manifests itself in

the behavior of CPU bound jobs, such as compiling. In spite of the

TENEX pie-slice scheduler's quaranteed fraction of CPU power, compute

bound INTERLISP jobs rarely aet more than ;% of their guaranteed CPU

power when, aqain, the load imposed on the machine by other users

increases beyond certain limits.

The above cited typical situations provide the motivation and the

framework for the work to be described. Our objective was to pin down

what aspects of the "INTERLISP cum TENEXV environment were responsible

for the observed objectionable behavior, and to propose and implement

remedies to improve the situation. More specifically, our qoals were to

improve system responsiveness for short interactions (e.g. editing) and

to increase system efficiency and throuqhput when executinq CPU bound

jobs.

To this end we performed an extensive series of measurements

coverino a variety of aspects of rvstem hchavior. We obtained

statistics of usaqe of INTERLISP from iifferent users doina different

thinqs; we traced the way INTERLISP uses core, hoth in the space and the

time dimensions; and we identified with hiah resolution the areas where

most instruction executions take olace, i.o. where and doing what the

system spends most of its time.

whoever has tried to understand with precision the behavior of a
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complex system immersed in a time-sharinq system knows how difficult it

is to actually measure what one wants, and how hard it is to interpret

the data one finally obtains. For this reason, we shall endeavor to

describe faithfully the methods and procedures used to obtain our data,

the conditions under which it was obtained, and our reasons for

assertino that it means what we believe it does. Our aim is not only to

describe our work and justify our results, but also to make the data and

the methodology used to obtain it available to others that may find it

useful for their own purposes.

Before embarkinq in this voyaqe, however, let us advance here our

main conclusions for the benefit of readers not wishing to wade through

the rest of the paper.

1) the lack of responsiveness (disproportionately long elapsed

times for relatively modest comoutational demands, or waitino 20

seconds when 3 seconds should have been enough) is due to both the

large workino set needed by INTERLISP anJ the particular way the

TENEX operatino system allows the core-memory allocated to a

process to arow to the process' workina set size. In order for any

sionificant amount of useful computation to take place in

INTERLISP, it is necessary to have from 60 to 100 pages in core;

with less than that, Program execution is interrupted by page

faults at intervals of a millisecond or less. Since TENEX does not

do any oreloadinq, and forces a process to grow its working set by

Paqle faultina itself up from pane 1, it takes rouqhly 10 seconds

(at 100 milliseconds wait time for latency, page management

routines, and rescheduling delays) to build up an INTERLISP working

3
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set. At this point (or even sooner) however, since page fault

interrupts are considered part of the process' chargeable CPU time,

the process would have exceeded its quantum allocation on the hiqh

priority interactive aueue, and descend to a lower priority

scheduling oueue. If by the time the second startup of the process

occurs (on the lower priority aueue), the process is still in the

balance set (i.e. has most of its paqes in core) some meaningful

computation can then begin to take place. If not, the same painful

page by page reloading process takes place again.

The remedies to this situation are direct:

a) reduce the size of INTERLISP's working set

b) modify TENEX so that demand paging occurs after initial

preloading of the previous working set for the Job.

2) Our second main conclusion addresses the issue of basic

efficiency. It pertains more definitely to the INTERLISP system

itself, and less to TENEX, and has its major impact on

compute-bound processes. Briefly, we found that roughly 80% of the

instruction fe.tches occur within 30 pages of shared virtual address

space, chiefly the MACRO (or hand-coded) module. In other words,

the system spends a majority of its time executing instructions

within a relatively small and functionally well-defined area of the

INTERLISP address space. It follows that tightening and

streamlinina code in those sections should bring about the largest

payoffs in terms of system operating efficiency. Our measurements

4
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I
in this regard were of very high resolution. We were able to pin

point the most often used 8 word blocks of code in the MACRO area,

pointinq out in great detail where improvements were needed. Our

work on shallow binding, fast function entry, fast tyoe checking

and fast CONSina responds to these documented bottlenecks.

Althouqh these are the hiqhliqhts, there are of course details and

subtle complications that will be dealt with more thorouahly in the

followinq sections.

N'.PI S C- .A &

DTlIC TAn

Justlf'*c ': " " i

D'.q1 r' : ,

A, I

5

* 1- -



BBN Report No. 3331 Bolt Beranek and Newman Inc.

MEASUREMENTS

In order to characterize the computational patterns of INTERLISP

runninq under TENEX, two distinct types of measurements were made. One

set of measurements involved the pattern of usaqe of TENEX resources by

several INTERLISP users over an extended period of time. The second set

of measurements involved detailed examination of the underlyinq activity

of the INTERLISP system itself as it was performing a number of typical

tasks.

Usae patterns and modes of interaction

A very suitable strateqy for the amelioration of INTERLISP

performance is to concentrate on those patterns of usage that involve a

large and perhaps unnecessary amount of computational power, memory,

and/or the user's own time. In order to do this, we needed to

characterize the actual use of INTERLISP by normal users going about

their daily business.

The first set of measurements used the built-in TENEX job parameter

statistics (CPU time charged, elapsed time, paae faults, time charged

within paqe-fault routines) to monitor the activity patterns of several

typical users over an extended period of time.

The data given is for a moderately long run (about 200 events) of

editing, compiling and associated debunginq operations, typical of much

of the activity of the LISP community. An event is defined as a single

6
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operation the user requires INTERLISP to do (like a PP or DW command in

the editor, or a compilation) which results in a certain amount of CPU

time beino consumed. The total CPU time recuired for the run is about 2

minutes.

We olot three quantities. First we solit the events up into qroups

defined by a ranae of required CPU time for the event (thus one qroup

miqht be events which took between 200 and 250 milliseconds of CPU time

to complete). For each qroup we then plot the proportion of the total

CPU time used by the job which is attributable to events in that qroup.

The oraph indicates the chosen CPU time ranqes for events. The upper

value of the ranqe is Qiven in the left hand column, and the lower value

is the orevious upoer value (all values given in milliseconds). The

number of events requirina CPU times withn the ranqe are given in the

second column, and the percentaae of the total CPU usage attributable to

those events is qiven in the third column. The Dercentaae is also

plotted as a bar qraoh immediately to the riqht, with scale qiven below.

Note that, if we define interactive events as those that reauire CPU

times of less than 300 milliseconds, only 219 of the total CPU is used

in interactive operations. This is actually somewhat hiaher than we

have seen in the uncontrolled data taken from several typical users -

this run involves a lot of editina. Thus, the lion's share of the CPU

load placed on the system is in lonq, CPU-bound activities.

The second graph shows the number of events requiring CPU times

within each of the chosen ranaes. It shows quite orap ically that 2/3

(671) of the total number of events represents "interactive" work.

7
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Thus, any degradation of performance resulting in the increase of

elapsed time for events (particularly interactive events) will be very

strongly felt by the user - with tremendous frustration judaina by

typical reactions.

Both of these olots are given in terms of net CPU time - this means

that for each interaction we have subtracted the time that TENEX

indicates was spent in the paqe-faultinq routines, since that time

varies strongly with load. This aives an indication of the "basic time"

spent in the various interactions. An indication of the additional CPU

time billed because of oaae-faulting is given in the third qraph which

gives percentage of interactions by gross CPU time - this includes all

TENEX billed time, including page faulting. For this examole run at

relatively low load, there were 2642 faults, representing approximately

11000 milliseconds of time recorded as spent in the page faulting

routines. The overall aross CPU time is 74,900 milliseconds. Thus,

about 15* of the billed time is due to page faultinq.

The same three ciraphs are qiven for an almost identical run at

moderate load. While the first two graphs are roughly similar (with the

exception of a "spike" at the .5-1.0 second reanqe due to a number of

error recovery (DWIM type) operations caused by execesive mistyping),

the third qraph shows that there is a notable increase in CPU time

billed because of the increase in paqe-faultinq. The total gross CPU

time is 132250 milliseconds, with 16053 page faults, accounting for

approximately 34,000 milliseconds or over 26% ot the billed CPU time.

It is interesting to note that there is a difference of about 34 seconds

8
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of net cpu time between these two ruris as obtained by subtracting the

TENEX reported page fault time from the gross CPU time. Since the

reported billed time per page fault was over 4 milliseconds during low

load, and about 2 milliseconds during high load, it is possible that

more time was spent in the page fault routines during the high load

situation than was recorded by TENEX. Of course, the slight change in

the run accounts fur some part of the difference, but probably nut more

than half. The page faulting behavior is examined in more detail in a

later section.

9.~-. . .
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Editing_ 2umpiling dwimifing arid cli spfving = ighl luad

AVERAGE LOAD IS: 1.265496
Tutal net CPU time: 63,550 millisecunds

MAX. CPU # OF PERCENTAGE OF TOTAL USED NET CPU TIME
MILLISEC EVTS

I III

I I f I

50 1 0.0
100 8 0.0
150 23 2.0 **
200 34 5.0 *****
250 44 8.5 ********
300 22 5.5 *****
350 14 4.0 ****
400 11 3.5 ***
450 7 2.5 **
500 2 5
1000 4 2.9 **
1500 8 10.0 *********
2000 2 3.0 ***
2500 2 4.5 ****
3000 1 2.5 **
3500 2 6.5 ******
4000 0 0.0
4500 1 140 ****
5000 0 0.0
10000 1 9.0 *****
15000 0 0.0
20000 0 0.0
40000 1 26.0 **************************
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.0
360000 0 0.0
*INF* 0 0 0

II I
I I I

0 5 10 15 20 25 30 35 40 45

10



BBN Repur't Nu. 3331 Bult Beranek and Newman Inc.

!
MAX. CPU # OF PERCENTAGE OF INTERACTIONS OF GIVEN NET CPU TIME
MILLISEC EVTSII I I I I

50 1 .5
100 8 4.0 ****
15I 0 23 1?.0 ***********
200 34 18.0 .4********
250 44 23.0 *****444*******Eff,44*
300 22 11.5 ****,,**
350 14 7.0 ****
400 11 5.5 **4

450 7 3.5 1.,
500 2 1.0 4
1000 4 2.0 4,
1500 8 4.0 .
2000 2 1.0 *
2500 2 1.0 *
3000 1 .5
3500 2 1.0
4000 ( 0.0
4500 1 .5
5000 0 0.0
10000 1 .5
15000 0 0.0
20000 0 0.0
40000 1 .5
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.o
360000 0 0.0
SINF* 0 0.0

0 5 10 15 20 25 30 35 40 45
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Tutal gruss CPU time: 74,800 millisecunds

MAX. CPU PERCENTAGE OF INTERACTIONS OF GIVEN GROSS CPU TIME
MILLISEC

I I i

II, I

50 0.0
100 2.5 *
150 10.5 *****

200 13.0 **********
250 19.5 ****************
300 13.0 ***********
350 11.0 *
400 6.0 ******
450 4.0 *
500 3.0 **
1000 5.0 ****
1500 2.0 *
2000 2.5 *
2500 1.0 *
3000 1.0
3500 .5
4000 1.0
4500 0.0
5000 .5

10000 .5
15000 0.0
20000 0.0
40000 .5
60000 0.0
120000 0.0
180000 0.0
240000 0.0
300000 0. o
360000 0.0

•INF* 0.0

0 5 10 15 20 25 30 35 40 45
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Editing. cjnpiling, dWimjfyjig and cli fyjing - mudejatel heavY luadI

AVERAGE LOAD IS: 6.637456
Tutal net CPU time: 98,250 millisecunds

MAX. CPU # OF PERCENTAGE OF TOTAL USED NET CPU TIME

MILLISEC EVTS
I I I

50I 1 0

100 10 0.0
150 23 1. *
200 i 31 .q
250 26 4.0 ****
300 19 3.5 *
350 16 3.9 ***
400 7 1.5 *
450 4 1.0 *
500 2 .5
1000 24 11.5 ***********
1500 7 6.5 *****
2000 4 5.0 ****
2500 2 3.5 ***
3000 1 2.0 **
3500 2 5.0 **
4000 1 3.0 *
4500 0 0.0
5000 1 3. ***
10000 1 6.5 *****
15000 1 8.0 *******
20000 0 0.0
40000 1 20. *
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.0
360000 0 0.0
*INF* 0 0.0

10 15 20 25 30 35 40 45
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MAX. CPU # OF PERCENTAGE OF INTERACTIONS OF GIVEN NET CPU TIME
MILLISEC EVTS

III II
I I I I

50 1 .5
100 10 5.0 *****
150 23 12.5 *
200 31 16.5 **************
250 26 114.0 *********
300 19 10.0 *=*******

350 16 8.5 * * *

400 7 3.5 ***
450 4 2.0 *
500 2 1.0 *
1000 24 13.0 ***********
1500 7 3.5 **
2000 4 2.0 **
2500 2 1.0 *
3000 1 .5
3500 2 1.0 ''

4000 1 .5
4500 0 0.0
5000 1 .5
10000 1 .5
15000 1 .5

20000 0 0.0
40000 1 .5
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.0
360000 0 0.0
*INF* 0 0.0

II, I

0 5 10 15 20 25 30 35 10 45
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II
Total gross CPU time: 132,250 milliseconds1
MAX. CPU PERCENTAGE OF INTERACTIONS OF GIVEN GROSS CPU TIME
MILLISEC

50 0.0

100 1.5 *
150 7.5 ******
200 8.0 *
250 10.5 *
300 11.0 ********
350 7.5 ******
400 8.5 ********
450 4.0 ****
500 5.5 *****
1000 19.0 *****************
1500 3.5 ***
2000 3.0 ***
2500 2.0 **
3000 0.0
3500 1.0 *
4000 1.0 *
4500 .5
5000 .5
10000 .5
15000 1.0 *
20000 0.0
40000 .5
60000 0.0
120000 0.0
180000 0.0
240000 0.0
300000 0.0
360000 0.0
• INF* 0.0

I I

0 5 10 15 20 25 30 35 40 45
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Change in Interfault interval between low and moderate loads

As described above, one of our observations is that the major

non-linear effect of machine load occurs as a result of vastly increased

page faulting, particularly for short, supposedly "interactive" jobs.

We plot the average time (net CPU - not counting time TENEX indicates to

be "page fault time") between page faults fur different net CPU length

interactions. This data is plotted fur, the two runs of the typical

editing, compiling, etc. job described above, at two different load

averages. Note that we only have control over load average, we do nut

have any direct measurement of actual memory contention. The low load

average run is at a value slightly higher than the "dead of night load",

but roughly comparable. The high load average run is only normal

moderate afternoon loading - that is already bad enough in terms uf page

faulting, so that really horrible load averages such as the 10-20 range

are not shown (and heaven forbid the 20-30 load range).

16
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Luw luad average - abuut 1.2

2642 tutal page faults

I

MAX. CPU # OF INTERFAULT INTERVAL - MILLISECONDS NET CPU TIME
MILLISEC EVTS

III I gI I I
IIIII I I I

III I I
IIII I I

50 1 0.0
100 8 15.5 ***************
150 23 33.5 ********************************
200 34 43.0 ******************************************
250 44 62.0 ********************************************
300 22 71.0 ***********************************************
350 14 85.0 **********************************************
400 11 32.0 *******************************
450 7 23.5 *******************
500 2 19.5 *******************
1000 4 B.0 ********
1500 8 13.0 *************
2000 2 12.5 *********
2500 2 6.0 *****
3000 1 19.0 * * * * * *

3500 2 38.0 ************************************
4000 0 0.0
4500 1 17.0 ****************
5000 0 0.0
10000 1 20.0 ********************
1500o 0 0.0
20000 0 0.0
40000 1 13.0 **********
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.0
360000 0 0.0
*INF* 0 0 .0

I'I I

0 5 10 15 20 25 30 35 40 45
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Moderate luad average - abuut 6.6

16053 tutal page faults

MAX. CPU I OF INTERFAULT INTERVAL - MILLISECONDS NET CPU TIME
MILLISEC EVTS

I I IIII

I I I

50 1 0.0
100 10 3.0 ***
150 23 7.0 ******
200 31 6.0 ******
250 26 13.5 *************
300 19 6.0 ******
350 16 2.5 **
400 7 5.0 *****
450 4 6.0 ******
500 2 5.5 *****
1000 24 5.0 *****
1500 7 3.5 ***
2000 4 4.0 ****
2500 2 2.5 *
3000 1 4.0 ***
3500 2 4.5 ****
4000 1 4.5 ****
4500 0 0.0
5000 1 10.0
10000 1 6.0 *****
15000 1 4.5 ****
20000 0 0.0
40000 1 13.0 ************
60000 0 0.0
120000 0 0.0
180000 0 0.0
240000 0 0.0
300000 0 0.0
360000 0 0.0
*INF* 0 0.0

0 5 10 15 20 25 30 35 40 45
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I
The measurements just described provide a picture of what "TENEX

believes" are the characteristics of LISP execution in a time-shared

environment. We use the expression "TENEX believes" because, as in any

time-sharing environment, the usage parameters shown fur a given job

depend heavily on the system load over' the course of the job. In part

this is due to the necessarily approximate allocation of system overhead

among the active jobs, which appears as an addition to the computational

resources the jobs would consume if they were running alone. More

important, however, is the fact that both the actual amount of overhead

and the allocation of this overhead to different jobs varies

substantially with different job mixes. A job with given memory

requirements fur example, will page-fault much more often when it is

competing fur core space with other memory-hungry jobs (or many

small-memory jobs) than when it is running in less memory-competitive

environments. Handling these page faults results in additional overhead

(CPU time) charged to the job.

Excessive page-faulting causes a dramatic lengthening of the

elapsed time for a job not only because disk latency inceases the

effective cycle time for memory references but because, more importantly

perhaps, such behavior can interact with the scheduler, resulting in a

job with basically interactive CPU reauirements (a small fraction of a

second of CPU time needed between interactions with the user) being

dropped from the high-priority interactive queue and placed on the

less-freauently serviced compute-bound queues. I/O contention causes

similar problems in increasing overhead arid wait times for jobs

competing fur use of shared devices such as the disk. Thus, for no

19



BBN Report No. 3331 Bult Beranek and Newman Inc.

fault that is intrinsically their own, certain jobs may be penalized

because their overhead-burdened CPU consumption makes the scheduler

decide that they belong in a lower-priority queue. In situations of

high memory contention this effect can pyramid, because during the wait

on the low priority queue the job may have most of its in-core pages

removed from core, and thus have to fault many more times than it would

have had to if it were allowed to finish its short CPU interaction.

In short, the usage parameters vary because the memury load and CPU

demand on the system change with different mixes of jobs, and these load

factors strungly affect the interaction of a user program (e.g.

INTERLISP) and the TENEX memory manager, i/o drivers and scheduler.

20
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Memory and CPU usage of INTERLISP as a separate system

The TENEX statistics correlated well with what the "monitored"

users experienced (and thus what the "typical user" would be likely to

experience) in operating INTERLISP under TENEX. While these statistics

suggested several changes to the TENEX system, they were insufficient to

provide a guide to the modifications to INTERLISP which would must

improve the operation of the combined INTERLISP/TENEX system. This was

due both to the coarseness of the measurements with regard tu the

operation of INTERLISP itself as an independent job, as well ab to the

great difficulty of characterizing the details of the actual interaction

between the two systems (or even characterizing the system load

parameters which prevailed durinF the measurements). Thus it was

necessary to obtai n an entirely independent characterization f the

memory and CPU usage of INTERLISP in executing typical operations.

This independent characterization consisted of a series of related

measurements based on a PDP-1O simulator program running under TENEX.

The simulator is a orogram which sits in a user's address space, and

essentially single-steps through a user program. The simulator takes

over from the PDP-10 hardware the job of computing the effective

addresses fur each of the user program's instructions, and provides

hooks to allow a measurement program to record the memory reference

pattern of the user job in any degree of detail desired. It is

important to note that the simulator sees a JSYS monitor call as one

instruction - NO ANALYSIS IS MADE OF TIME SPENT IN THE TENEX MONITOR

DOING I/O AT THE USER'S BEHEST. Thus, any program involving i/o will

21"-
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seem to execute fewer in tructiuns (as counted by the simulator) than

are actually executed when the prougram itself is run on the PDP-1O.

There are many other subtleties involved in understanding precisely how

the simulator works and how the data was analyzed. However, we feel

that these details are best discussed after we have presented the gist

of the measurement results.

Page Faulting versus Allowed Wurking Set

INTERLISP has acquired a reputation as a "core hog" - a program

that requires huge amounts of core in order to run. One of the must

interesting things to do with the page reference data is to determine

exactly how much core INTERLISP needs to run. Of course this is a

poorly defined question - what is interesting is the tradeuff between

the expected number of page faults (or the expected time between page

faults) and the number of pages allowed in the working set. It is

difficult to determine the tradeoff mentioned above in the case of

TENEX, because the page management algorithms in TENEX are rather

complicated and are influenced by the existence of pages shared among

several processes (which may cause TENEX to lose track of the last time

a given process used a shared Page). Thus, we have resorted to using

the page usage data in conjunction with a simplified page management

model in urder to give some indication of the effect of working set size

un page fault rate.

22
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We have produced graphs showing the number of page faults expected

for several measured programs fur' allowed working set sizes ranging from

about 40 to 200 pages, using an approximation to a simple page

management algorithm. The assumed page management routine is a simple

LEAST RECENTLY USED (LRU) algorithm working with a fixed size working

set. Thus, when a process starts up it begins to fault in paves, until

it has brought in as many pages as there are allowed in the particular

fixed size of the working set. The next time that a page nut in the

working set is referenced, the page in the working set least recently

referenced is removed from the working set and replaced with the new

page. The same process goes on fur, each page referenced which is nut in

the current working set. It is possible to simulate the behavior of

such a page management algorithm fur different fixed size working sets

and to determine the number of page faults that would result for a given

process for which we have oage reference data.

We present below the graphs of page faults versus allowed fixed

working set size for three typical program executions, and include

tabular data fur' other measured programs in the appendix. A number of

inferences can be drawn from them, depending on various assumptions that

might be made about paging behavior on TENEX arid on the parameters of

interest.

The first example, referred to as DWCL, involves three typical user

operations invoked under the LISP editor - "dwimifying" an expression,

"clispifying" an expression, and PRETTYPRINTing the expression. (In the

appendix we present the data fur a much longer run, called EDIT/CLEANUP,
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involving many editing operations of substitution, structure changing,

etc., obtained by repeating a protocol of an actual large scale

debugging session using the simulator.) The second example, referred to

as REGCOM, involves the compilation of a set of functions which are

already in core (i.e. COMPILE as against TCOMPL, so no file reading

operations are included). The third example is the operation of the

structure generator from the DENDRAL program, generating the possible

structures of the compound C4H6 (it is referred to as CONGENSIM - the

CONGEN simulation).

The graphs of page-faulting behavior fur these examples are given

below. The first column (labelled "WORKING SET SIZE") gives the number

uf pages allowed to accumulate in cure before th9 LRU algorithm is used

to replace old pages with new ones (causing nage faults). The second

column (labelled "PAGE FAULTS") is the number of page replacements that

occur for the currcspundinig working set size. These two columns give a

complete tabular representation of the data. The data is graphed to the

right of the tabular representation, with the Y-axis being allowed

working set size (as given in the first column), and the X-axis being

the number of page faults per 20000 memory references (this serves to

make the graphs of different runs more comparable), with the scale fur

the number of page faults being given below the graph. As is indicated,

there are approximately 1.2 million memory references which took place

in the course of the dwimificatiun, clispification and PRETTYPRINTing.

Note that the number of instructions executed in monitor mude (fur the

i/u in PRETTYPRINTing) are not accounted fur, nor are any instructions

executed in TENEX fur page management, scheduling, etc.
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Example: DWCL

1204224 Memory references in example

Allowed Page Pag- faults per 20000 memory references
Working Faults
Set

248 240 *
240 240
232 241 : *

i 224 245
216 248
208 253 *
200 262 *

192 286 *
184 310
176 318
168 335 :

160 347 *
152 372
144 397 : *
136 416 .

128 469 
120 574 :
112 616 *
104 700
96 825 :
88 985 :
80 1243 :

72 1551 : f
64 1916
56 2535 : f

48 3867 : f

40 8586 : f

:0 5 10 15 20 >>20
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Example: REGCOM

2037760 Memory references in example

Allowed Page Page faults per- 20000 memury references
Working Faults
Set

240 236 *
232 237 *

224 238 : *
216 242 *
208 249 *
200 277
192 289
184 292 : *
176 303 :
168 308 *
160 320
152 342 : *
144 372 *
136 428 :

128 520
120 797 *
112 895 :
104 962 . *

96 1041 : *
88 1128 . *
80 1251 : *
72 1420 :
64 1689
56 2168
48 3020 :
40 5236

....................................................

:0 5 10 15 20 >>20
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Example: CONGENSIM

2283520 Memory references in example

Allowed Page Page faults per 20000 memory references
Working Faults
Set

200 193 : *
192 196 : *
184 197 : *
176 204 *
168 212 : *
160 219 : *
152 225
144 235 : *
136 255 *
128 312 : *
120 400
112 480
104l 570
96 679
88 817 :
80 1016
72 1217 :
64 1593 :
56 2045
48 2936
40 5401 :t

:0 5 10 15 20 >>20

Interpretatiori of page faulting -esults

There are a number of subtleties that. should be borne in mind in

looking at the data. In the first place, the number of page faults is

viven assuming that the job starts from scratch, with no pages in core.

- Once the job is running, it is able to keep its entire allowed working

set with no losses, throughuut the entire run, simply bringing in new
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pages and swapping out LRU pages. If one wishes to make an estimate of

the frequency of page faults "in the steady state" for a compute bound

job, one should probably assume that the job has its full working set

in, and count faults after that. Thus, for this purpose, one should

subtract the size of the allowed working set from the fault count for

the given working set, in order tu determine how many faults occurred in

the steady state condition. However, if one is considering the number

of faults likely to occur if the interaction starting the example occurs

several seconds after the last user interaction, then the number of page

faults as stated are meaningful under the standard TENEX page management

operation - by the end of a few seconds of waiting for the user to

initiate an interaction, the user's program is probably no longer in

core because of competition with other jobs demanding memory in order to

run.

The substantial flurry of page faults needed to start up an

interaction when the program is not in core might account for the

difference in responsiveness felt between night-time and daytime running

of INTERLISP - at night there are times when the number of users is

small enough that the cure allocation for a user does not decay for

quite a while - conceivably two or three LISPs could reside in core and

riot be swapped out while waiting for user's responses. Thus, the

response to a request (similar to previous requests in terms of the

particular pages needed to execute the request) can occur immediately,

with relatively little page faulting. During heavier memory contention

times, the same request may require over a hundred page faults just to

initialize the working set. In turn, the charge for this faulting may
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take the job off the interactive queue and thus cause a delay until the

I job starts up on the lower queue - during which time the pages used by

the job can start to trickle out due to contention by other jobs.!
Assuming that the jobs in question have a high enough priority to

run to completion without being removed from cure, one can ask how the

billed CPU time for the job varies as a function of the allowed working

set size. Assuming that TENEX charges an average of about 3

milliseconds of CPU time per page fault, a page faulting rate of one

fault per 3 milliseconds would double the charged time for the job. By

comparing the number of memory references reported by the simulator to

the billed CPU time for a given job (subtracting off time TENEX

attributes to paging) we find that each memory reference accounts fur

about 1.5 microseconds uf CPU time (this includes memory reference time,

pager time, and the time to execute instructions) on the average. Thus,

the billed time doubles when there is one page fault every 2000 memory

references. In the editing run this corresponds to a working set size

of approximately 115 pages, fur the compilation example to about 100

pages, and for the CONGENSIM example to about 76 pages. (These figures

are based on the total number of page faults given by the simulator as

plotted above. For the "steady state", corresponding sizes are about

100, 70, arid 68).

Another interesting question is how the potential elapsed time fur

a job varies depending on the working set. If one assumes that the

minimum time it takes to fetch a page from disc is about one disc

latency plus the TENEX billed CPU time per fault, one carn say that the
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minimum elapsed time for a faulted reference is about 30 milliseconds,

corresponding to about 20000 regular memory references. Thus, a page

fault rate of one fault per 20000 references would cause a doubling of

potential elapsed time. Other estimates of effective elapsed time per

fault can be made, to take into account scheduling overhead and waits,

etc. These estimates range up to 100 milliseconds per fault. This

would correspond to 65000 references. There is also a question as to

what constitutes an acceptable increase in elapsed time. On the pie

slice scheduler, if the user has a 10% slice, then a multiplication of

elapsed time by 10 (due to waits for faults or due to scheduling) is not

unreasonable. This corresponds to somewhere between 2000 and 6500

references per page fault, depending on estimates of elapsed time to

resolve a fault.
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Cumpositiun of a Working _Set

U Given that ure intends to reduce the working set of INTERLISP in

order to reduce page faulting, the question arises as to what the

working set of a typical program is made up of. Since the concept of

LISP is associated with the notion of list-structure arid the existence

of large data bases of list structure, one might expect that much of the

working space is tied up in list structure. Given this, one might try

to reduce the working set by such techniques as linearization and

compactificatiur, of list structure. In fact, fur the programs measured,

lists take only a relatively small amount of the working space relative

to other items.

Taking the pare reference data, we simulated an LRU algorithm fur

four sizes of working set - 75 pages (a rather cramped set), 700 pages

(still small), 125 (reasonable), and 150 pages (a fairly generous one).

At intervals we determined which pages were in the working set and what

their data type was. We distinguished among several different types of

data -

MACRO - hand code part of system
COMPILED CODE - array space with instrucrtion fetch references
ARRAYS - array space with no instruction fetches
STACKS - control and variable binding stacks
LISTS - CONS cell area
ATOMHT - hash table fur atoms
ATOMS - atom header area
PNAME - print names of atoms
STRING - characters in strings
STRING POINTERS - pointers to bounds of individual strings
FIXED NUMBERS - fixed point rumbers
OTHER - stack pointers, etc.
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The results fur single programs seemed fairly stable in time, and

reasonably consistent from one program to another. We have plotted the

composition of the working set for several programs, and include

complete tabular data here. The data given averages the composition of

the working set over the course of each program's execution, the

time-varying data are available, but do nut seem to be of any greater

interest than the averaged data.
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COMPILEMEASURE

!
MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER

CCODE STACK ATOMHT FPNUM STRPT STR PAGES
20 22 3 3 11 0 11 0 2 0 2 0 1 75
21 35 4 3 16 0 13 0 2 0 4 0 2 100
23 46 5 4 21 0 14 0 2 2 5 2 1 125
22 58 6 3 29 2 15 0 2 2 6 2 2 150

111111111111:2222222222222222:3333331444444;6qS 75 pages

11111111112222222222222222222333333344444:6:9S 100 pages

11111111:222222222222222222223333333:14444:679S 125 pages

111111:22222222222222222222213333333333:144445679S 150 pages

1 2 3 4 5 6 7 8 9 1 percentage
0 0 0 0 0 0 0 0 0 0 uf wurking

0 set

Legend - numbers si~aify data tyts:

1 = MACRO cude
2 = COMPILED cude arid ARRAY
3 = LISTS
4 = ATOMS
5 = ATOMHT
6 = PNAMES
7 = STRINGS
8 = STRPTRS
q = FIXNUMS
S = STACK
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CONGENSIM

MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER
CCODE STACK ATOMHT FPNUM STRPT STR PAGES

14 31 1 4 7 0 14 0 1 0 1 0 2 75
16 45 1 5 11 1 18 0 1 0 1 0 2 100
16 58 3 5 15 1 21 0 2 0 2 0 2 125
21 66 1 5 18 5 24 0 3 0 5 0 2 150
21 77 4 5 21 9 25 0 4 0 7 0 2 175

1111111111222222222222222222221333344444444469SS 75 pages

1111111:2222222222222222222222333344444444569S 100 pages

111111122222222222222222222222333334444444469S 125 pages

11111112222222222222222222222333331444444415169S 150 pages

I ' I I ' I I
II I I I I I I

1 2 3 4 5 6 7 8 9 1 percentage
0 0 0 0 0 0 0 0 0 0 of wurking

0 set

Legend - numbers signify data types:

I MACRO cude
2 = COMPILED cude and ARRAY
3 = LISTS
4 = ATOMS
5 = ATOMHT
6 = PNAMES
7 = STRINGS
8 = STRPTRS
9 = FIXNUMS
S = STACK
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'I
PARSEMEASUREI
MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER

CCODE STACK ATOMHT FPNUM STRPT STR PAGES

16 19 2 3 12 1 18 0 0 0 2 0 2 75
18 29 3 3 18 3 20 0 0 0 3 0 2 100
19 40 4 3 24 5 22 0 0 0 5 0 3 125

20 50 4 3 29 9 24 0 0 0 8 0 3 150

21 59 7 3 31 11 28 0 2 0 9 0 4 175

1111111111:2222222222222 333333314)4444444444:56SS 75 pages

1111111112222222222222221333333334444444441516SS 100 pages

1111111222222222222222:333333333:444444441516:S 125 pages

11111122222?22222222222:333333333:4424444:55:66:S 150 pages

l':I:I I I I

1 2 3 4 5 6 7 8 9 1 percentage
0 0 0 0 0 0 0 0 0 0 of working

0 set

Legenid - numbers sigriify data types:

1 = MACRO code
2 = COMPILED code and ARRAY
3 = LISTS
4 = ATOMS
5 = ATOMHT
6 = PNAMES
7 = STRINGS
8 = STRPTRS
9 = FIXNUMS
S = STACK
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TASK1NLS

MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER
CCODE STACK ATOMHT FPNUM STRPT STR PAGES

19 18 2 4 4 5 11 0 1 2 5 2 2 75
21 27 3 5 7 8 16 0 1 2 8 3 2 100
22 35 2 5 10 11 19 0 1 3 9 4 4 125
22 43 5 5 12 14 23 0 2 3 11 5 5 150
23 55 6 3 19 14 25 0 4 4 14 4 4 175

111111111111:222222222222 3 4444444 55:6667 89SS 75 pages

1111111111:22222222222222:33:4444444:555:666:7:89S 100 pages

11111111U222222222222221333144444441555516661789SS 125 pages

1111111:22222222222222:333:4444444:5555:66617:89S 150 pages

I I I I I I I I

1 2 3 4 5 6 7 8 9 1 percentage
0 0 0 0 0 0 0 0 0 0 uf wurkiri

0 set

Legend - numbers signify data types.

1 = MACRO cude
2 = COMPILED cude and ARRAY
3 = LISTS
4 = ATOMS
5 = ATOMHT
6 = PNAMES
7 = STRINGS
8 = STRPTRS
9 = FIXNUMS
S = STACK
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I
On the average, over half of the working set is taker up with

program. The MACRO code seems to be referenced quite often, as

indicated by the fact that all the MACRO code needed by a program seems

to be in the working set for 100 pages, and no extra MACRO code comes in

at 150 pages. Thus, as you go from 100 to 150 pages the "execution

code" that is added is almost entirely compiled LISP. Note also that

atoms and their' ancillary storage are heavily referenced - adding

together ATOMHT, ATOMS and PNAMFS one gets over 20% of the wurking set.

The remaining 25% is divided up among the other items, with list

structure taking only 10-15% of the space.

This data suggests that the three best places to look to reduce

working set size are MACRO code, compiled code arid atoms. Other data

reported below indicate that while 20 pages of the MACRO code are

referenced, fewer than 5000 words (10 pages) of the MACRO code are

actually used in running the given examples (e.g. the MACRO code used

for error recovery, backtracing, etc. are riot being used, but they are

intertwined with the other code). Thus, by reorganizing the MACRO code

about 10 pages can be saved. It is possible that good rerganization

can do even better by taking into account the statistical Datterns of

references within the MACRO code to group together instructions commonly

used together. Because the compiled code is the largest single data

type, it is reasonable to spend time looking to improve the compiler to

produce more compact code. A 10% reduction in size of the compiled code

could reduce the working set by 3 to 5 pages. Finally, the large amount

of space used by atoms arid their ancillary data suggests that

compactificatiun of atoms might be useful. In the current system each
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atom requires four words of storage plus its PNAME - in order to allow

it to have a top level value, a property list arid a function call. The

hash table entry is one word, and the atom header takes three words,

since it must hold a full-word function cell, the PNAME pointer, the

property list pointer and the value pointer. Other data we have

collected suggest that this is quite wasteful, that few atoms have all

three features, and that many atoms are used entirely as "indicators"

and have only their PNAME and no property list, value or function

definition. It is conceivable that this might be taken into account in

designing a new structure for atoms.
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Counts of' references to various papge t_.es

I One way of determiniirg the general pattern of activity of INTERLISP

is to frind the actual number of references to a certain type of page

during the run of a program. We collected this data and obtained two

I surprising results - even for large compiled programs, over 80% of the

instructions executed were actually ones in the hand-coded part of the

LISP kernel; although LISP is associated with the concept of

list-processing, fewer- than 1.7% of all memory references (instruction

fetch and data read or write) go to list structure space. We give the

figures for several example programs below. The numbers refer to the

fraction of the total number of memory references made by the given

program to the particular type of page. "R/W" signifies read/write

references to the page, "Instruction fetch" indicates references to

memory to obtain instructions. The page types are indicated as follows:

MACRO: instruction portion of hand coded assembly language kernel
CCDAR: compiled code arid/or arrays
ASC&V: constants arid temporary storage associated with MACRO
PSTAK: the variable binding PDL
CSTAK: the control PDL
LISTS: CONS cell pages
ATOMS: atom header pages
PNAME: pages containing the print name character strings fur atoms
NUMS: fixed arid floating point numbers
PAGEO: the accumulators (registers) and the UUO trap location
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PARSEMEASURE 1 CONGENSIM COMPILEMEASURE: EDIT/CLEANUP SUBNET

Total Instruction fetch:
.563 .565 .570 .569 .482

Total R/W:
.437 .435 .430 .431 .518

MACRO: Instruction fetch
.514 .452 .438 .444 1 .362

CCDAR: Instruction fetch
.040 i .095 .121 .113 •108

MACRO: R/W
.017 .032 .025 .030 .108

CCDAR: R/W
.009 .024 .022 .023 .041

ASC&V: R/W
.058 .096 .074 .094 .068

PSTAK: R/W
.110 .067 .097 .066 .076

CSTAK: R/W
.090 .117 .095 .106 .082

LISTS: R/W
.012 .013 .015 .010 .016

ATOMS: R/W
.022 .003 .003 .004 .003

ATOMHT: R/W
.000 .000 .000 .001 .000

PNAME: R/W
.001 .000 .001 .004 .001

NUMS: R/W
.000 .000 .001 .000 .000

PAGEO: Instruction fetch i
.009 .018 .011 .013 .012

PAGEO: R/W (registers, UUO word)
.118 .083 .097 .092 .123
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Detailed instruction fetch measurements on MACRO code - bottlenecks1
The second set of measurements was made to determine exactly where

the CPU time used in per'furming typical INTERLISP tasks is spent. Given

that the vast majority of the INTERLISP system consists of compiled LISP

code rather than hand-coded assembly language (about 200k words of

compiled LISP code and about 15k words of hand-written MACRO code) one

might expect that a substantial portion of the computation dune by LISP

consists of executing compiled code. This is reinfurced by the fact

that over half of the memory required in the working set fur a givern

program is in the compiled code. However, as revealed by the

instruction fetch data above, approximately 80% of the instructions

being executed were part of the hand-cuded kernel of the INTERLISP

system the MACRO code. Thus, we decided to take a more detailed look at

the distribution of instruction fetches in the hand-cuded kernel.

The simulator was modified to record in detail the pattern o f

in struction fetches that occurred within the macro code. All memory

references outside the range occupied by the hand-cude and its temporary

data storage were lumped tugether. Within the hand-cude area fetch and

read/write counts were kept fur cuntivuous 8-wurd chunks of memory.

While it would have been somewhat more meaningful to record data in

terms of functional components of the hand-cude (e.g. particular

sut'ruutines), the table that would have been required was to large, and

the time uverhead prohibitive. The use of 8-wurd chunks allowed us to

lucalize references sufficiently to determine the functional chunks by

after-measurement analysis.
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The resulting data produced a rather strong, and to some people a

surprising result. If the 8 word chunks were ordered (fur each program)

by the number of fetches made within that chunk, then fur all programs

measured the top 30 chunks accounted for over 48% of the total

instruction fetches made by the program. In fact, the average over 12

quite different types of programs was that over 60% of the instruction

fetches for a program were contained within the program's top 30 chunks.

It was nut only the case that each program had its own "top 30"

chunks - the union of the sets of "top 30" chunks had only 54 distinct

chunks! Moreover, 45 chunks covered over 50% of the references made by

all of the programs. Thus, fewer than 350 words of hand-code (possibly

fewer than 300 words since many of the chunks contained obviously

low-probability code) accounted fur, the liur's share of the execution

time taken by INTERLISP.

On the basis of this data we were able to pinpoint a small number

of high-priority portions of the hand-code to optimize. As it turned

out, there was extremely high agreement between the data arid the

"educated guesses" of the knowledgeable members of the INTERLISP

community - the worst offenders had been predicted ahead of time by many

of the people familiar with the implementation, and there were almost rio

qualitative surprises - only the sheer concentration of the instruction

fetches was surprising.

While the exact core location arid time spent are useful to the

systems programmers in determining what words of the MACRO code should

be carefully tightened, this level of detail seems unnecessary fur this
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report. Thus, we will give primarily the highlights of the results.

The gory details will be made available to those who request them.

The single largest bottleneck in the system turned out to be the

procedure for looking up variable bindings on the stack. This took up

between 10% arid 45% of the total instructions executed, with an

"average" (weighted equally over all measured programs) of over 20%.

Programs which were block compiled tended to have the lower values of

time spent in variable lookup, but still substantial amounts. The next

greatest amount uf time, averaging 9%, of the instruction fetches, lay

in the function calling sequence, followed by about 8% of instruction

fetches in the type checking routines. If the time spent in the UUO

word arid UUO dispatcher are added to these times, the total time spent

in the function call arid type checking bottleneck is almost 20% of the

instruction fetches. The next big bottleneck is the binding of

variables on entry to a function, arid this takes about 5.6% of the

instruction fetches. Finally, to no ones surprise, the CONS routine

takes about 5% uf the instruction fetches. This is certainly high fur

fewer than thirty words of code, but it is riot as bad as many people

thought, giver, the complexity of the INTERLISP CONS algorithm.
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Distribution of instruction fetch references fur several programs

(Data from top 30 chunks, functionally distributed)

Function PDL search type checking CONS
Call Entry

PARSEMEASURE
.073 .039 .455 (!) .084 .024

COMPILEMEASURE
.050 .130 .232 .126 .074

DWIMIFY
.057 .092 .107 .133 .008 :.071(IUB

NEST
146 , .117 .107 .104 .049 1.017(IUB

**Q)
COMNASAGRAMMAR

.140 .128 .214 .050 .055
TASK1NLS

.100 .050 .157 .073 .061

av. .094 .093 .212 .082 .045

Brief Program Descriptions:

PARSEMEASURE
June 1975 version uf L. Bates' parser fur the BBN speech understanding
system, parsing a short sentence. Program not highly tuned.

COMPILE MEASURE
Compilation uf 9 short arid medium size functions from in-cure
definitiuris - compilation results stured in core arid on a file. Program
coded by systems personnel arid carefully tuned.

DWIMIFY
Application uf error correction function DWIMIFY to medium-size function
containing CLISP expressions. Program carefully tuned arid coded by
system personnel.

WEST
Early version of a CAI program to teach arithmetic. Coded by

nun-systems personnel using a highly-modular, functionally decomposed
style.

COMNASAGRAMMAR
Compiled version of ATN parser from the LUNAR natural language system.
Code produced by grammar-cumpiler.

TASKINLS
LISP simulation of NLS system under control of a CAI lesson monitor and
evaluator. Bluck-compiled system, moderately tuned.
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I
Detailed description uf the jperatiun of the simulator arid anaizer

We present below some fine details regarding the simulator and the

. way that page faulting data was analyzed. We hope that this information

might be useful to anybody wishing to further analyze or interpret the

data given in this report.

Since the simulator increases the CPU time needed to perform ar,

operation, by a factor, of from 40 to 80, it is tempting to extract as

much data as possible during a run of the simulator. This data can ther,

be processed by any number of analysis programs to provide various

characterizations of the operatiur, of the program in executing the given

job. However, there is a time/space tradeuff that arises that limits

the amount of raw data that car, be collected. Conceivably, one could

write out on a file the entire sequence of instructions executed and the

memory references nade durinv the execution uf a given user program.

While this would give a complete record of the computational activity of

the program, it is urfeasible for any but very short jobs - on a machine

which normally executes 300.000 to 500,000 instructions per second, a

few seconds of CPU time of the user- job would produce enough data to

fill an entire magnetic tape! Additionally, the i/u time needed to write

out the volume of page reference data would be prohibitive.

Thus, the alternative tack was taken - certain measures of the

memory referencing activity were abstracted during the simulation, and

ther, writtern out to be later analyzed. In all cases, parameters were

accumulated fur a quantum of 2048 memory references, and ther, the

abstracted data were written out. Two distinct measures were made. The
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first measure was made in order to determine the page referencing

activity of INTERLISP - this is the raw data used to determine

properties of the INTERLISP "working set". To obtain this measure, the

page number was obtained for every reference to memory (including those

occurring during indirect reference chains). Two tables were kept, one

containing the number of "instruction fetch" references to each page,

and the other containing the number of read/write references. The

reference counts were accumulated during a quantum (2048 total

references) and then a record was written out indicating all pages which

had been referenced during the quantum, and the number of read/write and

fetch references actually made. In addition, the INTERLISP type table

was saved fur the given job, giving a record of the "type" of the page

(i.e. whether it contained MACRO code, stack, lists, atom headers,

compiled code and arrays, etc.) All measurements were made under

conditions in which nu garbage collections (which can cause page

shuffling) would occur, so that the single type table was sufficient to

record the characteristics of each page.

An added degree of subtlety had to be taken into account in

recording page references, because of the "code swapping" or "compiled

code overlay" facility of INTERLISP. INTERLISP maintains one (arid

potentially several) "lower forks" in which it stores compiled code. A

segment of the basic 512k address space (generally 64 pages uf 512 words

each) is reserved as a "swapping buffer". By use of PMAP's this buffer,

is used to window sections uf the lower fork(s) to run code, and

therefore a reference to a "real" page in the swapping buffer is in

actuality a reference to some "virtual" page in the lower fork. Thus,
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!
the potential address space of an INTERLISP program is not limited to

~ the 512 pages directly addressable under TENEX - it can be indefinitely

large, though in practice it is currently limited to 960 pages (1024 fur

two forks, minus 64 pages in the swapping buffer). It was decided to

record the "virtual page" touched by each memory reference, so that we

could tell which compiled code was being used, rather than simply what

pages in the swapping buffer were being used to window compiled code.

An added complication is that the assignment of pages in the lower fork

to pages in the swapping buffer is dynamically variable, and so the

simulator must make use of the INTERLISP swapper's tables to convert

each reference to the swapping buffer to the current page reference in

the lower fork.

In the section on Page Faulting vs. Working Set Size we indicated

our use of a simplified page manavemerit algorithm (LRU) to replace the

page management procedures actually used by TENEX. To make it possible

to obtain page faulting behavior fur different working set sizes with

just a single pass over the data from the simulator, we make use of a

related concept, the "distance string", rather thar directly simulating

the LRU algorithm.

Given a sequence of page references, the corresponding distance

string is a sequence of numbers which gives, fur each reference, the

number of distinct pages which have been referenced since the last time

the giver, page was referenced. Thus, given an LRU algorithm, for a

fixed working set size all page references which have a distance string

value Freater than the working set size will cause faults, arid all
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references with lower distances will not fault. This permits one to

make a single run through the distance string file and compute the

number of faults for any number of different working set sizes.

Most of our data comes in quantized sets of 2048 memory references,

and thus we only know the time of reference of a page to within 2048

memory cycles. Because of this we must use an approximation to the

distance string algorithm. The resulting analysis of our data is nut

exactly equivalent to the results of the simple LRU algorithm described

above. For each page, we compute the number of distinct pages which

have been referenced since the last quantum in which the given page was

referenced. We include in that count all pages referenced in the

quantum when the given page was previously referenced which have not

been referenced in the intervening quanta.
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We have compared the 20118 memory reference quantum data with data

taken with a quantum of 128 memury references (in which the average

number of page references is slightly less than 10 per quantum). The

graphs of a few uf these runs are given below fur comparison. The

calculation of number of page faults for a given working set size is

substantially the same (within a 2% range) fur both quantum sizes, until

the working set drops below 56 pages. This is an indication that the

distance string values greater than 56 pages are quite accurate for the

large quantum data, arid since we are rut extremely interested in the

behavior of INTERLISP below about 75 pages (at which point it is already

page-faulting almost every millisecurd - a ridiculously high rate), the

large quantum data is sufficient to characterize the paging performance

of INTERLISP.

Some of the reasons why the large quantum approximation is likely

to be fairly accurate for distance string values above 50 are:

a) On the avera .e there are about 25 pages referenced in each

quantum, and data indicates that 10 to 15 of those are referenced

in almost every quantum. Thus, fur, distance string values greater

than 50 - two quanta of references at least - the number of pages

in the "previous reference quantum" which are riut referenced in the

intervening quanta is almost certain to be less than 10.

b) The data indicate that over 90% of the distance string values

are below 60, so that fur a page with distance string value over

-- 60, chances are that the contribution from its "previous reference

- quantum" is less than 10% of the number of page references
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originally in that quantum, since the other, 90% of those pages also

occur in at least one of the intermediate quanta. Thus, the

variation due to counting all of the remaining pages in the

previous reference quantum is on the order of 10% of the number of

pages in the quantum.
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I
Data from run of the dwimification, etc. example using a 128 memory

reference quantum

Example: DWCL128

1204224 Memory references in example

Allowed Page Page faults per 20000 memory references
Working Faults
Set

248 240 *
240 240
232 241 *
224 245 *
216 248 *
208 253 *
200 260 *
192 284
184 314
176 322 : *
168 334 *
160 354 : *
152 375 *
144 402
136 420 *
128 471 *
120 569 :
112 619 :
104 712 *
9' 829 *
88 980 :
80 1241 :
72 1541 *
64 1916 *
56 2486 *
48 3431 *
40 5269 *

......... ~e~loe+°~..........................,.I
:0 5 10 15 20 >>20
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Data from run of compilation using 128 memory reference guantum

Example: SMALL128COM

2037760 Memory references in example

Allowed Page Page faults per 20000 memory references
Working Faults
Set

240 236 : *
232 238 : *
224 241 : *
216 244 : *
208 251 : *
200 279 *
192 290 : *
184 293 : *
176 302 : *
168 309 : *
160 322 : *
152 344 *
144 368 : *
136 422 : *
128 521 :
120 786 : *
112 898 : *
104 963 : *
96 1035 : *
88 1132 : *
80 1256 : *
72 1425 :
64 1675 :
56 2137
48 2707
40 4139 : *

.. +.................o.,+.++.+.......++.oQ.....

:0 5 10 15 20 >>20
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Other page-fault versus wurking set curvesI

Example: COMPILEMEASURE

!/

2928640 Memury references in example
Alluwed Page Page faults per 20000 memury references
Wurking Faults
Set

240 233 *
232 234 : *
224 236 : *
216 240 : *
208 248 : *
200 285 *
192 296 *
184 300 *
176 310 *
168 321 *
160 335*
152 355*
144 388 *
136 474
128 659 : *
120 945 :
112 1067 :
104 1156 : *
96 1232 *
88 1342 *
80 1514 : *

72 1731 : *
64 2045 :
56 2544 :
48 3706 . *
40 6847 : *

:0 5 10 15 20 >>20
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Example: EDIT/CLEANUP

8392704 Memory references in example

Allowed Page Page faults per 20000 memory references
Working Faults
Set

320 317 :
312 317 :
304 319 :
296 339 :*
288 346 :*
280 354 :
272 366 :
264 377 :*
256 396 : *
248 415 : *
240 460 : *
232 485 : *
224 523
216 561 :
208 602 *
200 657 : *
192 723 *
184 796 : *
176 875 : *
168 956 : *
160 1067 *
152 1225 *
144 1391 :
136 1547 :
128 1807 : *
120 2112 :
112 2440 :
104 2914 *
96 3562 : *
88 4348 :
80 5530 : *
72 7386
64 10041
56 14020 *
48 22092 *
40 53392 *

.............. l....................................

:0 5 10 15 20 >>20
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Example: NLSPARSE

473088 Memory references in example

Allowed Page : Page faults per 20000 memory references
Working Faults
Set

205
208 211 *
200 211 : *
192 211 : *
184 215 : *
176 216 : *
168 219 : *
160 221 : *
152 226 : *
144 231 : *
136 233 : *
128 258 : *
120 273
112 291 : *
104 305 :
96 322 : *
88 342 : *
80 378 :
72 458 : *
64 603
56 785 : *
48 1200 : *
40 2833 *

..........................................................................................
:0 5 10 15 20 >>20
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Example: PARSEMEASURE

4333568 Memory references in example

Allowed Page
Working Faults/
Set 20000 memory references

288 287 :
280 289 : *
272 289 :
264 289 : *
256 289 : *
248 289 :
240 291 : *
232 295 : *
224 301 : *
216 312 :
208 317 : *
200 327 : *
192 342 : *
184 365 : *
176 406 :
168 453 : *
160 496 : *
152 545 : *
144 583 : *
136 625 :
128 837 : *
120 1227 :
112 1390 : *
104 1549 : *
96 1892 : *
88 2173 :
80 2577 :
72 3329
64 5236
56 7732 : *
48 12129 :
40 29041 :

:0 5 10 15 20 >>20
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